

IMPLEMENTATION PROGRESS Pakistan

3rd Regional Workshop of CARE Component 1: Regional Sectoral Focal Points

24 February 2025

Presented by Amber Masud, Country Program Lead, RIMES

Outline

- Overview of Tools
- Progress and Achievements
- Capacity building
- Challenges
- Way Forward
- Demonstration of the Tools/DSSs
- Discussion

Key Stakeholders and Partners

Component 1: Promoting Evidence-Based Climate-Smart Decision Making

Overview of Tool – CLIM PLANNed DSS and Mobile Application

Component 1: Promoting Evidence-Based Climate-Smart Decision Making

Mobile App - ongoing Development

Overview of Tool- ADVISE

Advise Mobile App Kisaan Rahbar

Progress and Achievements

stakeholders, with the final handover to the remaining stakeholders planned for completion by the end of

CARE for South Asia

15

15

17

Capacity Building

Use and O&M of DSS

Mobile App

Challenges

to delays.

Interdepartmental Coordination

01

02

05

Frequent requests such as downscaling the geographic scope, addition of new modules

Limited access to data, data quality, integration and compatibility issues, timescale

Farmers and other users often become confused by the availability of multiple systems, affecting their adoption and trust in the technology

Ensuring seamless communication and coordination between

various government departments can be challenging, leading

Navigating through bureaucratic processes and obtaining necessary approvals can slow down the co-production process

Resources Constraints

Limited resources and budget constraints often hinder effective collaboration and progress.

Limited Outreach

The limited focus on education and awareness can undermine project gains

High Expectations from Skaholders

Data Availability

User Confusion

Way Forward

Component 1: Promoting Evidence-Based Climate-Smart Decision Making

Demonstration

CLIMPLANNED

ADVISE Punjab

ADVISE Balochistan

Overview of ADVICE-DSS

- ADVICE DSS provides data-driven, site-specific crop management recommendations tailored for extension workers and farmers.
- It offers localized weather-based advisories for short-term, monthly, and seasonal planning to support informed agricultural decisions.

Key Features:

- Localized Weather Forecasts: Access to three-day weather forecasts tailored for specific regions.
- Agricultural Advisories: Recommendations on crop management, pest control, irrigation, and fertilizer application based on real-time conditions.
- **Data Integration:** Incorporates satellite data, meteorological inputs, and field data for precision farming.

Three Days Forecast Weather Conditions

Date	Max Temp(°C)	Min Temp(°C)	Rainfall(mm)	Humidity(%)
2024-11-27	15.73	5.19	0.00	81.08
2024-11-28	13.69	2.47	0.00	65.78
2024-11-29	12.07	-0.31	0.00	67.08

claimer: This advisory is based on the best available data and forecasts. While every effort has been made to ensure accuracy, unforeseen/i forming conditions may result in variations. It is recommended to verify local conditions and analyze risks before implementing any actions.

Optimal Weather Conditions for Wheat at Seedling

For optimal Wheat growth at the Seedling stage, the ideal conditions include temperatures between 12-25°C, daily rainfall of 20-40mm, and relative humidity levels of 60-70%. Adjust irrigation and fertilization to support crop growth under these conditions.

Crop Management Recommendations

Irrigation Management Measures

Water is critical at this stage of Wheat growth to maximize Seedling. The expected rainfall in the next three days is 0mm. However, the crop requires 315mm of irrigation water while total available water is 149.56mm at this stage in Bahawalpur.

Datasets Utilized for ADVICE DSS

Data	Variables	Global Data Sources	Local Datasets/ Validation	
	Maximum Temperature		Dekister	
Weather Data	Minimum Temperature	European Centre for Medium-Range	Meteorological Department/	
Weather Data	Rainfall	Weather Forecasts (ECMWF)		
	Relative Humidity			
Soil Fertility	Nitrogen	HWSD (Harmonized World Soil Database)	World Soil	
	Phosphorus	NASA (National Aeronautics and Space Administration)	Pakistan/ Extension	
	Potassium	GSDE (Global Soil Dataset for Earth System Modeling)		
Water Availability Data	Evapotranspiration (ET)	MODIS Satellite	On-Farm Water Management	
	Modeling-Conveyance Losses (CL)	(ET × CL)	Department & PCRWR	
Crop Threshold	Optimal (Tmx, Tmin) and Rainfall at	Conducted Analyses-DSSAT, APSIM	PAD/ Research	
Pest/ Disease	Threshold (Tmax. Tmin, RH, Rainfall).	Pest warning & Quality Control Pesticides		
	IPM practices	Agriculture Department Punjab (Crop Production plan)		

Overview of Punjab **ADVICE-DSS**

3 Types of Advisories

1. 3-Day Advisory

- Actionable recommendations delivered every three days
- Accurate fertilizer dosages •
- Optimized irrigation scheduling

2. Monthly Advisory

• Comprehensive production plans tailored to monthly conditions

3. Seasonal Advisory

- Planting Date Prediction Module
- Pest Forecasting Model

	Punjab Punjab Ag	Agro-r
	Observation Data	
1 Observation	Mostly Sunn	y Sunday, 23rd
🛃 Latest Forecast	≁ H	ighest Temperatur
A 3 Days Advisory	Des auron Diff. () and (address 2005.00)	arcatogai
🛗 Monthly Advisory 🗸	Des sone mo passioner alement	
O Seasonal Advisory ∨		-
🔁 Data Repository	Select District:	Attock
Link to Resources	Sunday	17-
Ø Crop Resilience	23/0 Fe0, 2023	
A Feed Back	*	
English		
	01 1698.℃	81
	🟛 0.00 mm	
	الله 79.08 €	2
	≓ 0.00 km/h	카
	Observation Map	

neteorological Advisory System Department

Agro-suitability and Key Factors

Scientific evaluation to determine the most suitable crops for different regions

Key factors

- Soil Characteristics
- Climate Conditions
- Water Availability

ligh Suitable Area (70% - 100%) ledium Suitable Area (35% - 69.99%) ow Suitable Area (0% - 34.99%)

Datasets Utilized for Agro-Suitability Analysis

Data	Variables	Global Data Sources	Local Datasets/ Validation	
Climate Data •Historical: 2010-2024 •Future: 2025- 2100	Maximum Temperature	WorldClim/ CMIP6	Pakistan Meteorological	
	Minimum Temperature		Department	
Soil Data	Soil pH	International Soil	Soil Survey of Pakistan	
	Soil Root Depth	Reference and Information Centre- ISRIC		
Water Data (2015-2024)	Evapotranspiration (ET)	MODIS Satellite	On-Farm Water Management Department & PCRWR	
	Modeling-Conveyance Losses (CL)	(ET × CL)		
Crop Norms	Tmax. & Tmin: Optimal	FAO- ECOCROP	Research Papers	
	pH Min, Max (Optimal)	Modeling- DSSAT		
	Crop Water Requirement- Modeling	IVIODEI		
Component 1: Promoting Evidence-Base	d Climate-Smart Decision Making		CARE for South Asia	

Green Transport Decision Support System

What A tool based on transport emissions data

Purpose Generate future scenarios for transportation carbon emissions to support policy decisions

Output

- 1. GHG Emissions from transportation
- Transport Emissions and socioeconomic factors 2.
- 3. Future Scenario

Time Frame 2025 till 2050

Component 1: Promoting Evidence-Based Climate-Smart Decision Making

Datasets Utilized for Green Transport

Data	Source	
Transport Emissions	CW	Climate Institute Support includin Environ
Socioeconomic Indicators	WDI	World D World B
Qualitative Indicators	Scholarly Literature	Based o

Component 1: Promoting Evidence-Based Climate-Smart Decision Making

Validity

Watch (CW). World Resources Washington, D.C (2024) ting organization are over 12 g World Bank, Stockholm ment Institute, GIZ, UNCC

Development Indicators (WDI) is a Bank Data source

n scientific literature

THANK YOU

CARE for South Asia Project, Component 1

Contributing to an enabling environment for climate-resilient policies and investments for select sectors in South Asia

www. careforsouthasia. info